Source and formation pathway of colloidal organic matter (COM) from river to ocean: clue from lipids and their δ^{13} C ratios

Ming-Yi Sun^{1,2}, Li Zou³, Laodong Guo⁴, Xu-Chen Wang⁵, and Baowei Sun²

¹Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
²College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266003, China
³College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
⁴Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA
⁵Department of Environmental, Coastal and Ocean Sciences, University of Massachusetts at Boston, Boston, MA 02125, USA

(Karl et al. - Biological pump working group summary)

Temporal variations of POM, COM, and DOM during open season?

Sampling date

Sampling date

Summary

- Three carbon pools (POC, COC, and DOC) in the upper Yukon River are affected by soil erosion, hydrological dynamics, and biochemical cycling

- Total OC continuously declined from the beginning of snowmelt, while fatty acid contents varied independently

- Fatty acid compositions are dominated by short-chain saturated fatty acids but bacteria-specific fatty acids (BSFAs) comprised an important fraction

- Smaller variability in δ^{13} C of BSFAs compared to other fatty acids implies that bacteria utilize the bioavailable substrates from the same OC source

- Implication: global warming will not only release more soil OC from land but also promote production in Arctic rivers

Sta. acids	Date	Latitude	Longitude (W)	Salinity	C/N	δ ¹³ C-T($\mathbf{M} \mathbf{\delta}^{15} \mathbf{N}$	ГОМ t-fatty
		(N)		(Mole)		(ä)	(ä)	$(\mu g m g^{-1})$
Bo	ston Har	·bor/Massac	chusetts Bay					
BH2 BH5	Jul 98 Jul 98	42?7 .14' 42?0 .38'	71°02.26' 70°57.35'	25.0 30.3	13.0 10.9	-25.7 -24.3	3.27 2.86	1.27 3.79
De	laware/C	Chesapeake	Bay					
DCB1 DCB3 DCB4	Aug 98 Aug 98 Aug 98	39°48.21' 36°59.28' 39°04'	75°24.53' 76°19.79' 75°16'	0.2 20.0 26.0	16.1 11.7 11.4	-24.8 -24.5 -23.1	4.40 8.92 5.98	1.05 3.62 2.81
Sa	n Diego I	Bay						
SDB2 SDB3	Jan 99 Jan 99	32?0 .81' 32?1 .27'	117°10.39' 117°07.88'	33.9 33.9	9.1 10.9	-22.2 -25.1	6.01 5.27	1.20 1.65
Sa	n Francis	sco Bay						
SFB1 SFB2 SFB3	Jun 99 Jun 99 Jun 99	38?6 ' 37?3 ? 37?1 '	122°30' 122°35 122°51'	17.1 28.5 32.3	15.5 12.9 7.9	-26.1 -23.1 -27.8	5.10 6.35 4.00	4.82 3.68 0.94

Spatial variations of HMW-DOM lipids?

References:

Canuel et al., 1997; Boschker et al., 1999; Teece et al., 1999

Summary

- Bacteria and phytoplankton are major contributors of HMW-DOM lipids in coastal surface waters

- This fraction of HMW-DOM is formed by direct release of bacterial membrane components and bacterial reworking of phytoplankton-derived OM

- Despite the diversity of coastal regions, the fatty acid compositions and their δ^{13} C ratios in HMW-DOM samples are remarkably consistent, suggesting a universal formation pathway

Free lipids - solvent extractable

Bound lipids - saponification-released

 $\delta^{13}C(0/_{00})$

Summary

- Lipid compositions and compound-specific δ^{13} C ratios of HMW-DOM in the Middle-Atlantic-Bight varied with water depth, implying that the origins at different layers of the ocean may differ

